I remember that I was fairly anxious at the beginning of my fourth year at Imperial. I was concerned about securing work after university. Looking back, this seemed patently ridiculous; I had topped my class for the third time and already had a return offer in hand from Palantir. However, owing to sweeping government rhetoric about controlling post-study work visas at the time, I saw “not being able to get a work visa” as the primary risk then, even if it was remote. That statement in and of itself was probably correct, though the time I spent to monitor and mitigate that risk (reading up on government committee reports, and considering alternatives like a H1B1, EU blue card or doing a Tier-2 ICT after a year) was excessive.
Of course, this never materialised; and even if it did, the only likely impact would be that I’d have to fly home to Singapore in between finishing uni and starting work (I did not; though on hindsight that might have been a good thing to do).
I’m not sure when I first became aware of the concept of probability distribution functions (or, for that matter, continuous random variables). These functions are continuous, take on nonnegative values and integrate (across all variables) to 1. In the case of single variable functions, one can plot them on a two-dimensional graph; one may get results looking somewhat like the picture above, in some cases.
Areas of regions underneath the graph are proportional to the probability that a value falls in that region. For example, a uniform distribution would have a probability function that’s just a horizontal line. The graphs for the return of investments 1 and 2 in the example above follow what’s called a normal distribution; investment 3 follows a Student’s t distribution which has fatter tails.
Since areas are proportional, a simple technique for generating random values from an arbitrary distribution is called rejection sampling; if one draws a box around the distribution and throws darts randomly at it, one can take the x-coordinate of the first dart that lands underneath the function as a representative random sample.
That’s a basic mathematical introduction. If we had to rank the quality of the return profiles above (remember: right means higher returns), a lot would depend on what we were trying to do. I would personally rank investment 2 (the green curve) on top; it has a considerably higher mean return than investment 1 (blue) and adds only a small amount of variability. We can calculate what’s known as the standard deviation of a given distribution; this is a measure of how much variability there is with respect to the mean. In fact, the blue curve has a standard deviation of 0.6; this is 0.7 for the green curve.
Ranking investments 1 and 3 is more difficult; the mean of 3 is higher, but you add a lot of uncertainty. I’d probably rank them 2, 1, 3. However, there is also an argument in favour of investment 3 – if one is only interested if the returns exceed a certain level. It’s a similar line of argument where if you’d ask me to double a large sum of money (nominally) in 20 years, I’d pick a bond; 10 years, a general stock index fund, and 10 minutes, probably blackjack or aggressive forex speculation.
Whichever investment we pick, it’s possible that we may get unexpectedly awful (or excellent!) results. The standard deviation could give us some measure of what to expect, but there is still a non-zero probability that we get an extreme result. For the normal distributions (the blue and green curves), there is a 99.7% probability that a single observation will be within three standard deviations of the mean; this does also mean that there’s a 0.3% probability it does not, and about a 0.15% probability it’s lower than three standard deviations below the mean.
Tail risk refers to the risk of events that may have severe impact but are low-probability; considering them is important. Going back to the work visa situation, I think I correctly identified visa policy changes as a tail risk, though in hindsight controlling the amount of time spent mitigating them was done poorly – akin to spending $10 to insure against a 1% probability of $100 loss (provided the $100 loss wasn’t crippling – which it wouldn’t have been).
I also spent a lot of time focusing on mitigating this specific tail risk, when perhaps a better solution could be developing resilience to general tail risks that may affect my employment. The obvious routes at the time would have been continuing to do well academically and develop my skills, though others exist too – such as having a greater willingness to relocate, living below one’s means and building up an emergency fund. There are still further tail risks that the above wouldn’t address (e.g. a scenario where computers and automation are universally condemned, all countries practice strict closed-border policies and the global fiat money system collapses) but the costs in mitigating those risks seem untenably high. I haven’t read Antifragile yet (what I describe here is weaker, as it doesn’t demonstrate benefiting from low-probability events), though that’s planned to be on my reading list at some point in the future.